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Abstract

A method of solution for the equation of radiative

transfe for a spherical, grey atmosphere, steady state

plasma in radiative equilibrium is developed. The method is

called the ray-integration technique and derives from the

same method of solution done in cylindrical geometry by

George Nickel of Los Alamos National Laboratory. The total

and net radiation flux, source function, opacity and moments

of intensity are calculated as a function of radius. The

solution to the zero'th and first moment equations are also

provided.

The conditions of the grey atmosphere problem and the

il general nature of radiation transport in spherical geometry

are developed and the ray integration technique, as applied

to the problem, is presented.

Numerical results are calculated for a variety of radial

mesh and opacities. These results are provided in graphic

form and compared against theoretically predicted behavior.

The ray-integration technique developed in this thesis

produces numerical results which are in reasonable agreement

with theoretical predicted results.

.
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THE RAY-INTEGRATION TECHNIQUE
IN SPHERICAL GEOMETRY

I. Introduction

Background

Motivation. In any study of radiative energy transport,

the formulation and solution of a fundamental conservation

equation is of paramount importance. This equation is known

as the equation of radiative transfer, or, more commonly, the

transfer equation. The transfer equation predicts the char-

acter of the radiation field of a plasma by solving for the

intensity at a point within the field as function of time and

position. This thesis prescribes a method of solution to the

* transfer equation in a one-dimensional, steady-state, fre-

quency independent medium in one-dimensional spherical geom-

etry.

The method used is called the ray-integration technique

and is based on work done by George Nickel of Los Alamos Na-

tional Laboratory.

TRAILMASTER Project. The ray-integration technique is

derived from work done by Nickel in support of the U. S. Air

Force's TRAILMASTER project. The goal of this project is to

create a high energy source of soft X-rays from the rapid

collapse of a cylindrical foil. In support of this goal, Dr.

Nickel created a program called LMILNE which executed the ray-

__ integration technique in cylindrical geometry. The program he



created incorporated some techniques which could be expanded,

with modification, to different geometries. It was determined

that so modifying the technique into spherical geometry would

prove useful.

General Applicability. A solution for the transfer equa-

tion is frequently needed in many branches of physics. The

-l" -preponderance of dense spherical plasmas with radiation fields

modeled in research provides the motivation to find methods of

solution which are both efficient and accurate. The ray-in-

tegration method has proved to be both.

Analysis of Stellar Atmospheres. Applied to spherical

geometry, the ray-integration method of solving the equation

of radiative transfer could be very useful, especially to the

astrophysics community as a "first order estimate" device for

modeling extended stellar atmospheres. The assumptions made

about the nature of the plasma system solved for in this in-

vestigation is completely analagous to the radiative equilib-

rium, grey atomosphere model often used in text books to illus-

trate the basic nature of radiation transport. The research

for this thesis depended extensively on this analogy. Although

normally referring to a stellar body, the terms atmosphere and

interior are used throughout this paper to refer to the regions

of energy transport and source region respectively. This in no

way alters the applicability of the assumptions and solutions

to spherical plasmas in general.

, 2
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V- Objectives and Scope

. V The goal of this research has been to produce a physi-

cally realistic solution to the transfer equation which:

-- produces numerically accurate results from which the

"* character of a plasma can be approximated

-- can be used to engender an intuitive understanding of

the physical nature of stellar atmospheres..

A second objective of this research is to verify the ray-

integration technique as plausible by:

-- implementing a computer program which utilizes this

technique

-- producing graphs of the results using various combina-

tions of radii, opacity, power and iteration techniques

-- comparing the results of this program against theoret-

ically predicted results.

- Assumptions

To effectively develop a method of solution for the be-

havior of a system, its physical character must be established.

That is, assumptions about the size, shape, and material prop-

erties of the system, in this case, the plasma, must be known

beforehand. This does limit the applicability of a technique

to a specific physical model, but often provides sufficient in-

sight to generalize the method to other systems.

The particular assumptions made are that the ray-integra-

tion technique, as developed in this thesis, is applicable

specifically to a system that is

3
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-- spherical

-- frequency independent (called the grey atmosphere

problem)

-- in radiative equilibrium

-- time invariant, i.e. steady state.

Method of Solution

The ray-integration technique is implemented using a com-

puter program written in the FORTRAN language. The program

was executed on both a CRAY located at Los Alamos National

Laboratory and, with minor changes, on the author's APPLE II+

compatible computer. The graphs shown in this report were

done exclusively on the CRAY.

The inputs to the program were values for the opacity and

source function of the radiation, as well as the number of ra-

dii and radii spacing which consequently made up the radii

mesh.

The output of the program is the net radiation flux, the

total radiation flux, and the ratio of moments of intensity

known as the Eddington Factors. Additional output consists of

solutions to the moments of the transfer equation. All input

and output are in MKS units.

Plan of Presentation

This report is presented in the following manner. The

first chapter is a review of the basic theories of radiation

transport and of the specific nature of the grey atmosphere

problem in radiative equilibrium. Chapter II presents an

4



overview and develops the ray-integration technique. The next

* ) chapter provides a development of the numerical methods. This

is followed by an outline of the program developed to imple-

ment the ray-integration technique. Next presented is a sum-

mary of some results generated by the computer code, along with

a discussion of these results. Finally, conclusions and recom-

mendations for further study are put forth in the last chapter.

-I



-. II. Theory

To understand the technique for solving the equation of

radiative transfer, it is first necessary to review some of

the basic physical theories of the transfer of energy and de-

velop the transfer equation for analysis. This will be done

in this section beginning with the characteristics of the ra-

diation field and progressing through a general description

of the grey atmosphere. The development of the following con-

cepts is fairly standard and can be found in many textbooks

such as references 2, 3, 6, 7, and 9.

Description of the Radiation Field

The region within and surrounding the body of a star or

spherical plasma mass is a radiation field which contains pho-

tons of various frequencies traveling in all directions. The

interaction of the photons with the mass of the body and with

each other results in energy transfer. A description of the

intensity variations, then, describe the nature of the radia-

tion field from which other material properties of the mass

may be derived.

Specific Intensity. The radiation field produced by the

emission and absorption of photons brings about a transport of

radiant energy, dE, in a specified energy interval (v, v + dv).

Picture this energy transfer as a beam of radiation flowing

from a surface element area dA, into a solid angle da, in a

direction a that makes an angle (y) with the normal to the

6



surface, f, (see Figure 1).

Figure 1

A beam of radiation, originating from surface
element dA, into a solid angle dQ,

travelling in direction Q of length s.

The transfer of energy along a distance r and through

time interval dt is expressed by the equation

dE(n,s,v,t) = I(n,s,v,t) da dt dv cos(y) ds (1)

where I(n,s,v,t) is defined as the specific intensity (or,

more simply, intensity). Suppressing the time and spatial

dependence, intensity = IV. The units of intensity are watts
-2 -1 1

m sr hz - . It is clear that, by knowing the specific in-

tensity at points progressing through a region, the energy

present, and many quantities derivable from the energy, can

7



be known.
Moments of Intensity

The Mean Intensity. In addition to intensity, there

are other quantities used frequently to describe the behavior

of the radiation field. These are the angular averages, or

the angular moments, of intensity. There are three moments

which are used in spherical geometry. The first is called the

zero'th order moment or the mean intensity, J, and is simply

the average of the intensity over all angles (thus, it is of-

ten also called the "all-angle intensity"). The mean inten-

sity is, therefore, given by

Jd I vd (2)

The units of J are the same as the units for I
V1 V

It is common practice to transform the integral over

solid angles to an integral over the quantity U = cos(y).

This is done by substituting the differential do by

sin(y) d4 dy = - d4 du. If, as is usually the case, there

is symmetry about the azimuthal direction, then the integral

becomes

= I (p) dui (3)

Expressing the angular moments in terms of integrals inp

is known as Eddington notation.

8
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The Flux. The first order moment of intensity is

' known as the flux, C . Physically, this flux represents a

vector quantity such that (C • dA) gives the radiation en-

ergy flow across a surface area dA per unit time, per unit

frequency interval. Analytically, this is given by

CV fal (Q) cos(y) (4)

In Eddington notation, this integral becomes

r

C 2 7 J I (p) p dp (5)

-2 -1
The units of total radiation flux are watts m hz . Addi-

tionally, a quantity called the Eddington flux is defined as

H 1 I (p) V dp (6)

It can be seen that the Eddington Flux is an average flux

-2 I -1
per steradian. Its units are watts m str hz

One other commonly seen version of the radiation flux is

called the astrophysical or total flux, F. This is simply

the flux emitted over all directions and is

- F (r) = 4 7r 2 H (7)

where r is the distance from the center of the sphere to the

location at which the flux is being evaluated.

9



The Second Moment. The second moment of intensity,

K, is related to the radiation pressure (3:68). This quantity
2

is simply constructed by multiplying the intensity by cos (T)

and integrating over all solid angles. Using Eddington nota-

tion,

KV = V fI (p) M2 dp (8)

The units for K are the same as for I , J , and H .

Summary. The traditional radiation quantities

I, J, H, and K, described in the last sections are generally

sufficient to develop an approximate analysis of the radia-

tion field. For emphasis and easy referral, they are summa-

rized in Table 1. The equations are given in Eddington no-

tation because this the form will be used throughout the re-

mainder of this report.

Table I

Summary of Intensity and Moments of Intensity

Nomenclature Symbol Equation

Intensity I dE = I da dt dv cos(y) ds

Mean Intensity J J = I I (p) dp
(Zero Moment) V 2 f _1 V

Eddington Flux H H = 4 I (p)V dp

(First Moment) V V -

Second Order K KV = P I() '2 dp
Moment V 2 V

10



The Interaction of Radiation with Matter

Having thus defined the quantities which approximate the

radiation field, we now consider the processes which produce

and modify them.

Interaction Processes. Photons are catagorized into spe-

cific energy groups of given frequency intervals. The pho-

tons, as they pass through the matter in the radiation field,

constant1y interact with that matter and with each other.

They may be scattered out of an energy interval or absorbed

by atoms, ions or molecules. They may be emitted into energy

groups by spontaneous decay, or simply scattered into an en-

ergy group as a result of being scattered out of another. The

result of these interactions is to modify the intensity of the

radiation field. Detailed descriptions of these processes are

not necessary for the comprehensive development of this thesis.

It is sufficient to separate these interaction processes into

two groups, removal mechanisms and addition mechanisms, and

consider only the microscopic results of the processes in terms

of opacity and emissivity.

Opacity. The probability that a photon will be either

scattered or absorbed in a prescribed path length is given by

the extinction coefficient, or opacity, XV. The opacity, in

general, is defined in a similar manner as the intensity. That

is, the amount of material removed can be represented by an en-

ergy flow, such that a volume of material of cross section dA,

and length da, removes from a beam with specific intensity I

incident normal to dA and propagating into a solid angle dR, an

II



amount of energyI
6E(n,s,v,t) + X(n,s,v,t) I(n,s,v,t) dA da dQ dt (9)

within a frequency interval dv, in a time dt (5:23).

There are different opacities for scattering and for ab-

sorption, and even different opacities for the categories of

scattering (elastic, coherent, etc.) and for the types of ab-

sorption that occur (photonization, free-free absorption,

etc.) However, since these processes are statistically inde-

pendent, the opacities add linearly such that

XT xv s + x a (10)

s _

W where XV is the scattering opacity, X a is the absorption

T.
opacity and X is the total materials opacity. For conven-

ience, in this thesis, no distinction will be made between

the particular type of removal mechanism and the term opacity

will be used to refer to the total material opacity. Since

opacity is the probability that a photon will interact over

a given distance, the inverse of the opacity is simply the

mean distance that a photon will go before an interaction oc-

curs, i.e., the inverse of the opacity is the mean free path.

The units of opacity are length-'; or m-1.

Emissivity. The population of photons in a frequency

interval may be altered not only by removal from the interval,

but also by addition to the interval from other frequency

12



groups. This may be done either by the photons being scattered

into the group as they were scattered out of others, or they

may be created by some emission process.

Following the process used to define the extinction coef-

ficient, we define the emission coefficient, or emissivity,

n., such that the amount of energy released from an element of

material of cross section dA and length da into a solid angle

di, within a frequency band dv, in direction Q in a time inter-

val dt, as

3E(n,s,v,t) = nV (n,svt) dA da dR dv dt (11)

The units of emissivity are watts m sr hz (7:25). Again,

Y ' the above derived quantity is the total emissivity and is a

linear sum of emissivities of the separate emission processes.

Optical Depth and the Source Function

Having defined the concept of opacity and emissivity, two

very important concepts are presented which derive from the

above. These are the optical depth and the source function.

The Optical Depth. Given the opacity along a path length

ds, the differential optical thickness is defined such that

d Tj =( Vds (12)

Integrating over a distance along the line of sight yields

- .-. S 2**J.- " (S) = [ V(s') ds' (13)

13



where T is now the optical depth. Since ds is in units of
distance and y is in units of inverse distance s dimen-

sionless. The limits sl and s2 are defined such that the in-

tegral is always positive, that is the optical depth increases

as r -> 0 and is 0 at the surface of the sphere. The optical

depth is the number of mean free paths along the line of sight.

A region is said to be "optically thick" if TV >> 1, and "op-

tically thin" if T << <<

The Source Function. As stated in section B, the radia-

tion field is continually being perturbed by the removal and

addition of photons. The ratio of the amount added to the

amount removed is simply the ratio of the emissivity to the

opacity and is called the source function, S. The source func-

tion is, then, given by

S - (14)

where X is the total opacity and nV is the total emissivity.

Although simply defined, the source function can actually be

quite involved to calculate, depending on the number of proc-

esses occurring which produce the opacity and emissivity of

the material. An excellent treatment of some of the more com-

mon variations of the source function can be found in Refer-

ence 7, Chapter 2 and Reference 2.

The Transfer Equation

The material properties, opacity and emissivity, discussed

14
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in Section C, modify the intensity of a stellar atmosphere.

The change produced can be expressed in words as

[change in I per path length ds] = [source - sinks] (15)

where the term "sources" means change in intensity per path

length ds due to the emission processes occurring, and "sinks"

refers to the changes occurring which are due to absorption.

Thus, the above can be rewritten in terms of opacity and emis-

sivity as

dI
ds v Xv'v (16)

where X is the total materials opacity and n is the total

materials emissivity. Expressing the left hand side explic-

itly in terms of position and time yields

dl 1 a + v+ VI (17)

7 s -

Coupling equations (16) and (17),

1 V + S" = n -X 1 (18)

which is the transfer equation in differential form. Using

(14) and assuming a steady-state radiation field,

S1 = x (S - ) (19)

15



For a one-dimensional, spherically symmetric radiation

field,

3 c sin(w) al
cos(y) r a - ( Iv) (20)

In terms of Eddington notation, this is

-i + ) xv(Sv- ) (21)
r r V V

Yet another form of the equation (19) is produced using the

definition of the source function and the relationship

dT = xVdS, such that

dIv = S - I (22)

Multiplying both sides of the above by and integrating

over dT, from T = 0 toT V T. The result is

-T ( ' T (23)

I (T ) = I (o) e - + f VS e V dT '
V V V V

A number of variations of the transfer equation have been

presented in this section. To review, and for the convenience

of the reader, the following table lists the version of the

transfer equation and its solution which will appear explic-

itly in a later section.

16
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Table II

• -The Transfer Equation and its Solution for a One-Dimen-
sional, Spherically-Symmetric Radiation Field

Name Equation

Transfer eq. ai ai
in spherical aV r aI v I
coordinates ar r aw = V I

Solution to the I (T) I (o)e Tv + 'S e v'-v) r'
transfer eq. v v IV o v

The Moments Equations

As the transfer equation represents the change in inten-

sity, so the moments equations represent changes in the mo-

ments of intensity. These equations will now be presented.

A The Zero'th Moment Equation. The zero'th moment equation

is formed from equation (21). Integrating this equation over

all solid angles or, in Eddington notation integrating over p

from -1 to 1, yields

1 31 V  1, V (1
SV d + 2 d1  If (S - I) d 1 (24)
2w 2 _ r _ V V V

Using the relation

1 n 3 V ,n I V12 f d dn nl) n f + InI d (25)
. 2 7 dV

1717
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Equation (24) becomes

2 [  1 I dj] + r f p I v di = dj + [Lf Iv d U] (26)

Substituting in for the boxed quantities, those moments they

equate to (see Table I, page 10) the zero'th moment equation

is revealed to be

3H _ 2 1 a(r 2 H)

ar r v r=xv (S -J) (27)

The First Moment Equation. Proceeding in the same manner

as above, equation (21) is this time multiplied through by 4

and integrated over all V. Again using relation (25) produces

f 1' 1 2I +f 2 I dIr I d28)
-1 v 2 ] r - l +- _

Again, substituting the appropriate moments from Table I

yields the first moment equation.

3K + 3 K - J
--r- H (29)

Summary. For emphasis, the following table lists the

significant equations of this section.

18



Table III

The Moment Equations

Name Equation

Zeoah~(r2H) = xv (Sv - J ) (27)
Zero' th 1I r V

Moment Eq. r2  ar X v v

First aKV  3KV-J v  H (29)
Moment Eq. a + r v v

Assumptions and Approximations

Vital to any scientific work are the assumptions and ap-

proximations that are made. Already certain approximations

have been presented in this thesis. In Section C, the approx-

imate regions traditionally considered optically thick or thin

were outlined. In Section B, causally different inter-atomic

processes were grouped under the same headings as either re-

moval or addition mechanisms. The transfer equation in Sec-

tion D was specialized, based on a steady state approximation.

All these are valid in general and essential to the develop-

ment of this thesis. In this section, the last approxima-

tions and assumptions necessary to be stated are presented.

The Eddington Approximation. The material properties,

opacity and emissivity modify the energy flow and, thus, the

intensity and its moments. In particular, within certain

limits of optical thickness, the moments take on approximate

values. This section discusses one very frequently used ap-

19



proximation, the Eddington approximation, and variations of it.

The Eddington Factor.

The Diffusion Limit. The Eddington approxima-

tion is manifested in the variable Eddington factor, fk' which

is defined as the ratio of the second moment of intensity to

the zero'th, or, more simply, fk = K/J. The approximation is

that, at great optical depths, the radiation field is nearly

isotropic. The area where this is true is called the diffusion

limit. In this limit, the intensity is subsequently independ-

ent of angle and can be removed from the moments integrals of

Table II, page 17. Doing so reduces those equations to

.11

,= I V f d = IV (30)

and

-II I~. - T(31)

Thus, in the diffusion limit, fk = 1/3. This is physically

valid and can be derived independently as part of the diffu-

sion approximation (7:51).

The Streaming Limit. While the Eddington ap-

.4 proximation certainly holds true in the optically thick re-

gions of the plasma, what then can be said about its accuracy

in the optically thin, less dense, outer regions? In this

case, the Eddington Approximation must be augmented.

Consider that, in the outer region, the photons are no
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longer colliding as frequently, since their population is, by

definition, sparse. Thus, the mean free path is comparatively

long and the photons can be thought of as essentially travel-

ing in uninterrupted paths or, streaming. In this streaming

limit, all photons are going in the same "direction": out.

Therefore, all angular moments must sum to the same value and

any ratio, thereof, must be one, thus the Eddington factor,

fk' is one in the streaming limit. It is, therefore, more ac-

curate to talk about not an Eddington factor, but a variable

Eddington factor: one which varies from 1/3 at deep optical

depths within the system to 1 at the outer boundry of the sys-

tem.

N The "Second" Eddington Factor. Although most liter-

N; . ature refers only to the ratio fk as the Eddington factor,

there is also another comparative ratio which is frequently

used. This is the ratio of the Eddington flux to the mean in-

tensity, or H/J. This "second" Eddington factor will be re-

ferred to in this thesis as f1H" For convenience, both ratios

will be termed the Eddington factors and will be distinguished

by their subscripts. As with the first Eddington factor, the

ratio H/J also has limiting values.

The Flux as r -> 0. In the central regions of

the sphere, it is clear to see that f must be zero. This is

due to the fact that as r -> 0, the radiation field is iso-

tropic and, thus, the total radiation flux must be zero, since

there is no net energy flow. Analytically, this can be seen

by returning to Table II and noting that for an isotropic
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t Oi field I is, by definition, independent of and can be removed

from the integral. What remains then is

H = I I f UC = 0 (32)
v 2 -1

Thus, if H -> 0, as r -> 0, so.to does fH"

The Streaming Limit. In the streaming limit

fH - > 1. This is so for the same reasons given previously

for the streaming limit approximation of fk"

Radiative Equilibrium. A stellar atmosphere by defini-

tion is that portion of the star that transmits the radia-

tion which is created deep within the interior. In the at-

mosphere region, these energy transfer processes take on two

forms in general: radiative and hydrodynamic. For the pur-

poses of this thesis, it is assumed that all transfer proces-

ses are radiative. In other words, it is assumed that the

plasma system is in radiative equilibrium; that is, all en-

ergy is transferred through radiative processes, thus all en-

ergy absorbed in a volume element must equal that radiated in

that element. If over all frequency intervals, the energy re-

moved from the beam is

v§ dv dy V I V  4r X V J dv (33)

And the energy emitted is

fdv dQ n = 41 f. X S dv (34)
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I
This results in the relation

4-o f- s - 1 0 (35)
0 V V V

or, J = S , (7:49). Note that the radiative equilibrium

assumption states that what is created within a volume is de-

stroyed in this volume implies that the total radiation flux

within a volume must be constant, or

1 a(r2HV) =
1- r (S J) 0

r 3r -V

or

r 2 H = constant: 4rr2 H = F constant (36)
VV V

The Grey Atmosphere. A fundamental example for the

analysis of stellar atmospheres, and the specific case of

study of this thesis, is the investigation of the grey at-

mosphere. The grey atmosphere problem is appropriate for

the study of solutions to the transfer equation because the

assumptions which are entailed are such that the solution

of the equation becomes independent of the nature of the ma-

terial itself. In addition, the problem introduces the

aspect of radiative equilibrium, which may then be expanded

to more realistic cases of non-grey, non-static problems.

SThe crux of the grey atmosphere problem is that the
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opacity of the material is independent of frequency, thus

V = X (a constant). Further, integrating all quantities over

frequency such that

x f.X d (37)
0 X\ dV

where x = I , J SV , etc., the transfer equation takes on

the form

U i-+ (-- 2 81 = x (s - J) (38)

Summary. Before finally moving on to the specifics of

the ray-integration technique, a summary of the assumptions

and approximations of this section is given below.

Table IV

Radiative Equilibrium and Grey Atmosphere Assumptions

Assumption Statement Result

Radiative J = S 4 , r 2H = constant
Equilibrium

Grey X = XV I, J, H, K, S are
Atmosphere frequency

independent
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Table V

Variable Eddington Factors

Diffusion Limit Streaming
Ratio Symbol Approximation Approximation

141

K/J f- fH> 03 > 1

25



III. The Ray-Integration Technique

Having developed the basic theory of radiation transport,

attention is now turned to the actual solution of the grey at-

mosphere problem via the ray-integration technique.

Statement of the Problem

To reiterate, the purpose of this thesis is to explore a

method of solution to the spherical coordinate form of the

equation of radiative transfer, specifically for the grey at-

mosphere, steady state problem. This method of solution is

called the ray-integration technique. As the name implies,

the gist of this method is the solution of the transfer equa-

tion along lines of intensity, called rays. The rays are

divided into small length segments, ds, and the transfer

equation solved each segment. The solutions are then inte-

grated numerically over the entire ray. A step-by-step de-

velopment of this method is described in the next section.

Development of the Method

To begin an explanation of this method, first, imagine

a spherical plasma having a central region which produces co-

pious amounts of photons. A physical analogy of this would

be the interior of a star where subatomic interactions result

in large amounts of radiation output. In this region, radi-

ation field is very dense and the mean free paths of the pho-

tons are very small. In other words, the optical depth is

.. very large. Here the diffusion limit is valid. Now imagine
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that this interior, very dense region is surrounded by an ex-

tended envelope of material that is considerably less opaque

to photons, i.e., a region where the photons mean free path

is considerably longer. This region can be likened to the

atmosphere of a star. It is through this atomosphere region

that the radiation is transported from the interior to, and

.out of, the surface of the plasma body.

VThe location of any point within this sphere is defined

by specifying its radial distance, r, from the center and the

longitudinal and azimuthal angles, (a and a) made with the

axis' of the sphere, see Figure 2.

VFigure 2

Location of a Point on a Sphere

Now, subdivide the sphere into a series of concentric shells

and imagine a ray of photons passing through the sphere tan-

gent to one of the shells. The position of the ray at that

tangent point is now further defined by specifying the local

., or directional, longitudinal and azimuthal angles made with

a. 27



respect to the normal to the surface. See Figure 3.

AS = S - S
2 1

ro impact
parameter

Figure 3a.

Directional Angles of a Ray Passing Through a Sphere

Thus, in general, the intensity measured at any point within

the sphere is a function of the radial distance, r, and the

four angles a, B, b and (p. However, for the one-dimensional

case, we are considering the intensity is independent of an-

gles a, B and . In other words,

I ( = I (r,q) (39)

Now, let's examine the y relationship. Imagine that the ray

of photons has a length s and an elemental length As between

to radii. If this distance is sufficiently small, then

As ds. Similarly, Ar dr. See Figure 3b.

28
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Figure 3b

Coordinates of a Ray Passing Through a Sphere.

From the geometry, it is clear that

dr
cos(y - dy) = cos(y) =- (42)

Further, note that
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"N (dr) 2 + (-rdp) 2 =ds 2  (43)

or

d" -sin(W) (44)
ds r

Relating these relations to the directional derivative used

in solving the transfer equation, we have

2 V 1 - 3r 31 + 3-P P-I

= 3 sin(p) 3I:- = COS(y) -r (-P

+_ 31
8rr 8 (45)

where u= cos(y). The above is just the relation that was

simply stated in the last chapter. Recall that the solution

to the transfer equation is

T' T

I (T) = I (o) e-T  + fT S( ) e 'd-' (23)

which, for a differential length of ray, ds, and using
S

2

dT= x(s)ds, T = f.x(s' ) ds' , is

S2 fS2- I x- s, Xf (s")d'

.(s) = I(s) e + fs S(s') X(s') ds' e (46)
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The object of the ray-integration technique is to solve the

above equation for each length of ray, ds, between two radii

and to add the solutions for each increment in order to find

the solution for the intensity along the entire ray; in other

words, to numerically "integrate" the intensity over the en-

tire ray.

'1

%
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IV. Numerical Solutions

Numerical solutions to the transfer equation via the

ray-integration technique were implemented explicitly by com-

puter code. In this section, the numerical methods, the logic

behind them and the differencing schemes produced are detailed.

Geometry Dependent Variables

Radial Mesh. The first task in solving a geometry depen-

dent problem is to define the geometry dependent variables.

First of these are those variables defining the physical size

of the plasma and the number and spacing of radii which the

sphere is divided into; in other words, the radial mesh.

The size of the sphere is defined indirectly by inputting

the number and spacing of radii. These values are essentially

arbitrary and can be scaled up to the size of a stellar body

or down to a small spherical plasma. The form of the radial

mesh is also arbitrary. That is, an evenly spaced mesh can be

used as reasonably as a logarithmic scheme, or even a com-

pletely random spacing. An example of how a five radii,

evenly spaced mesh might look is illustrated by Figure 4. The

mesh is indexed such that jn is the total number of radii,

with the first radius being defined as zero. That is, in terms

of the example, jn = 5, r(l) = 0.0, r(2) = 0.005 m, etc.,

through r(5) = 0.02 m.
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4..

Figure 4

Example of an Evenly-Spaced Radius Mesh

Angular Mesh. Refer back to Figure 4. Note that there

is an angle y made with the radius normal for each ray that

passes through the sphere. If many rays pass through the

sphere, all at different y angles, then there will be a dis-

tribution of angles for each radius so that each radius has

'5 an angular mesh which looks like Figure 5.

*1I - 4.
(8) (

(9) w 4 Y (I)

Figure 5

* Angular Mesh of an Evenly-Spaced, Five-Radius Sphere
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We see that each radius point has as many angles associated

with it as rays that pass tangent to it. If we define the

rays to be symmetric about 4 = 0, then only half the number

of angles which exist need to be generated, since the angles

on one side of the centerline are just the negative of their

mirror mate.

Generation of Angular Weights. Recall that the quanti-

ties which are used to analyze a spherical radiation field in-

clude the angular moments of intensity, J, H, and K. Take for

example the moment J whose equation is

J 1 f 11 (V) di (47)
m-11-

Where V1+ is the angle at the beginning of the ds interval and

W- is the angle at the end. This integral equation must be

given a numerical equivalent for solution by computer code.

This was accomplished by the method of Gaussian quadrature,

such that

3
1 fp+I(p) di I() wk (48)
2 - k=l

where w are the numerical weights which allow the summation

to approximate the integral (see Appendix A for an explana-

tion of Gaussian quadrature). As before, I is the intensity

on the As interval. Note that intensity, I, must be given a

numerical representation as well. Thus far, the intensity

-A
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has been defined in terms of energy flow, but no particular

polynomial representation has been presented. There are actu-

ally a number of ways in which the intensity can be expanded,

all with equally varied degrees of accuracy. Many forms of

polynomial expansion were attempted in the solution of this

problem. It was found, however, that a second degree Legendre
J .

polynomial expansion gave the greatest degree of accuracy.

This expansion is

I(p) = a + bp + (3p2 -1) (49)

Thus, equations (46) and (47) yield the expression

3 w I() a(P+ -) + b(p 2 __2) + E(P 3+p_ p+ p_)(50)

k=l

The weights are found three at a time by solution of the re-

sulting matrix equation

1 w_ (P+ - P_)

2 2
4-. 14o 4+ Wo = ( u 2 - )

3 W_2_1I p 2 -1 3V+2-1 w + _ P+ 1

2 2 2 2
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B. Material Properties

Now that the geometrical properties have been developed,

the physical characteristics of the radiation field, some of

which are explicitly angular dependent, can also be derived.

In this section, then, the material properties of opacity and

emissivity (in the form of the source function) and the de-

rived quantity of optical depth are developed in their dif-

4 ference form.

Opacity. Opacity of an extended atmosphere is a strong

function of radius. There are numerous methods used to de-

fine this dependency (see for an example Reference 2). The

discretization formula chosen in this study was a cubic spline

fit, of the form

X (r(j)) = a, + a2 r(j) + a3 r(j)2  (51)

where al, a2, and a3 are constants chosen to mimic the nature

of the plasma being analyzed. The validity of this formula

was established by Dr. George Nickel in his cylindrical ver-

sion of the ray integration technique.

The Optical Depth. From knowledge of the opacity, the

optical depth at the tangent points can be derived. Recall

that the relationship between the two is

S 2

T f X (s') ds' (52)

Using the geometry established where
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ds sec( ) = r (53)

the integral in ds can be reduced to an integral in dr by

3 3 4
ai r2 rj+1)dr I a. . P. (54)

i= -r /r 2 r 0 
2  i=o 1i=

The integral is solved by the exact integration formula taken

from Reference 1, where

P= /r 2-r - /rF-r 2
2 0 0

r2-r 20 - r - +  (n(/r 2 -r -- r

P2  r/~2- 2-r 2 1 2 - 1  -2)2 2 2 0 0 o 2 2 0 1 0

P3 = ((r 2 +2r 2) /r 2 -r 2 -r 2 +2r 2/r 2-r 2)/ 3
2 0 2 0 0 0

P4 = ((r /r 2 +2r 2 ) (r 2 +1.5 r 2 M42 2 02 " O

+3 (ri4n /r 2- r 2)
0 2 0

((r, /r 1 2 +2r 2 ) (r 2 +I.5r 2 ))/4

- (r0 r

*3 ( r l n 'C 2 _r 2 

(
-8(o 0 (55)
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The Source Function. The last material property neces-

N' sary for the solution of the transfer equation is the emis-

sivity. This quantity appears in the transfer equation in the

form of the source function, S.

It is assumed that the source function, like opacity, is

a function of radius. The exact variation is not as simple to

predict as with the opacity. A more complex relationship ex-

ists. Traditionally, an estimate of the source function is

made based on observable quantities. However, a method of re-

fining this initial estimate has been produced and is the

fundamental quantity which makes the ray-integration technique

both unique and eminently practical. In this section, the

"first guess" source function estimate is derived and then,

from it, the specific solution.

Initial Estimate of the Source Function. The source

function of a system, such as a stellar body in the depths of

space or a small plasma confined in a magnetic field in a lab-

oratory, can be inferred from the radiation flux emitted from

a spherical body of radius r is just the rate of energy change

per unit volume. Defining the quantity P (for power) as the

rate of energy flow, along a distance r,

H - P
H 2 (56)

4vr

where H is the Eddington flux as defined in Chapter II. Now

recall the first moment equation is
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aK + 3K-J

r = - XH (29)
3r r

Assuming that the atmosphere is optically thick at r, then

according to the Eddington approximation, 3K - J, and the

second term vanishes. Further, making use of the assumption

of radiative equilibrium, J = S, yields K = 1/3 S. Equation

(29) becomes

13 as X P (57)
3 ar4ffr'

Using a forward differencing scheme on the left hand side and

assuming that the right hand side can be averaged such that

S= + ) - SO) -3 K(j) +K(j +1) (58)Sr(i + 1) - r(j) f P "  r r(j+ 1 2)

Solving through for S(j) yields

S(j) = S(j + 1) + (r(j + 1) r(j)) P:) (59)

4..

'V" Note that this scheme can not be used at the outer bound-

A-d_. ary since in the steaming limit K = J, and the second term

4. 39
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does not vanish. Instead, another method must be developed

to solve for the source function at that limit. This is done

by the introduction of the extrapolated boundary. The extra-

polated boundary is an imaginary boundary outside of the phys-

ical limit of the plasma system where the flux goes to zero.

The extrapolated boundary is illustrated in Figure 6.

7

F(r) X
= radius of the sphere

7L
r->

*Figure 6

Flux at the Boundary (3:59)

The solution for the extrapolated boundary is outside the

scope of this work, but is derived for both neutrons and pho-

tons in References 4 and 7. The solution is simply stated in

this report as

r(jn) + d =  2 13 X3[n) (60)

*, where d = the extrapolated boundary, and r(jn) is the outer

radius of the sphere. This outermost point is the classic

40
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streaming limit, where by assumptions of Section II.C.3 H = J.

Still assuming radiative equlibrium, J = S, thus by equation

(57),

14jr(n) 2 (61)
V.~~ ~~ 3~Sj)(~i) 4irr(jn)

This is the relation used to express the source function at

the approximate physical boundry. The discrete form is

S(jn) x (jn) (62)
2S r(jn)2

Last in developing a source function for the sphere is
the derivation of the innermost region. It is assumed that

the centermost radius region contains a source which increases

linearly with radius in the manner illustrated in Figure 7.

S~inner
S(r ) regio

r l) r(2)~r->

Figure 7

Radial Variation of the Source-Bearing Region.
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Within the source region, the Eddington flux also varies. It
N, <%.'

continuously rises from H(o) to some value H(2), as illus-

trated by Figure 8.

H(r)

"inner
region

r~l r-> rC2

Figure 8

Radial Variation of the Eddington Flux.

The Eddington flux is thought to vary linearly within this

region. The solution of the first moment equation, thus,

gives

Sr( 2 )- = 7 X(l) H(l) + X(2) H(2 (63)

Differencing the above yields
d*i

V.. 3 / 2 • P )(4

S(1) = S(2) + (2) 2 (64)

/ 2r(2)
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Refinement of the Source Function Estimate. Using

the reasoning outlined above, a value for the source can be

estimated at each point on the radius mesh. However, recall

the solution to the transfer equation involved an integral of

the source over the length of the ray. This equation is

- S2 dS2
JsI x(s)ds'S2 - fs' x (s")ds" (65)

I(s2 ) = I(s) e + fJsS(s') X(s') ds' e
I

To avoid having to solve this rather cumbersome integral

equation, we create an "equivalent source function" which we

will call S*, such that equation (65) can be made into

I(s 2 ) 
= I(sj) e-T  + S* (I - e-

T

Development of the S* Function. To establish

the S* function, first consider the radius segment shown in

Figure 9.

Figure 9

Radial Segment Showing Position of r*.
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The distance r* is defined as the spatial distance along the

ray of length S2 - S, at which the equivalent source function

S, exists. Said in other words, at r*, the source function

has a value S*, which, if used in the solution of the transfer

equation, reduces (65) to (66). Assuming that the source

function varies linearly over the interval s2 to sl, the func-

tion S* can be approximated as

S= 5 1S 5  rs (r(s )-ri/r-r )+$2 - r1 / (67)
I-'.'

Substituting this into (66) yields s

f ( s" )ds"

'" -." -( = (s) e (s')ds' (Sr-Sr) f 2 ds'x(s') e (68)

"_ S2

":::S2-SI S2 fS, s") ds"

+"'2" fs ds' x(s') r (s') e

.' . Note that the first integral term can be easily reduced to

S r-S r Si '[~ Sz 2r 2- f Is y s22 (1 - e T) where = , (s" ) ds" (69)

The second integral term can also be reduced by defining r*

as

S2 S2 r d r( e
f sI X (s")ds" f

r* s, ds' (s') e 0

' 1-e-
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Using (69) and (70) in (66) gives

-T - Ir  -S r

I(s 2 ) = I(s ) e + (2-e ) - - )  (71)2 r(l (1 e r2-r (71

.. , or

or(s2)= I(sT) e + (l-e") 2 + -r*-r) (72)
I(2) I(,)e (-eI r -rl 2 rj, rz/

Thus, we have transformed the messy integral of equation (65)

into the much neater, and numerically convenient, form of

equation (66).

-;

I(s 2 = I(s i ) e T + S* (1-e - T ) (73)

The difficulty now lies in the solution to the r* inte-

* gral. This is done via the method of cubic splines leading

to incomplete gamma functions. The definition of the method

of cubic spline interpolation is found in Appendix B. Its

application to generation of the r* function is given below.

Development of the r* Function. Recall that

the r* function is

f r(r') e T  dT

r* 0 (74)
le T

First, the interpolatory function is fitted to the r (T)

V.,
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polynomial which has the values of

r (o) =r

r (T) r2

dro (-) = / () / r 2 (r)

T- dr ) 2ir0 rr X(r) (5

T r2 o r2 o (75)

With these values and slopes, r (T) is of the form

3
r(T) b (6

j=o (76)

Where,

b =r0 2

drj
b dr 2

3(r -r) dr 1 + 2 r 2b - 12+b =+ a1T 2 r
2 T T

2(2 d dr +. dr
b 2(r2- r ) + d- I 12 (77)" 3 2

T T

so that

3
r = bj J.T j e T dT' (78)

j=o

46

S "- """''. 
-,, , . ., . . . . ,- . . .-. , . . . , , . '



Some care must be taken when evaluating these incomplete gamma

functions at small argument, since large subtraction errors

develop. For example,

T + + 2 + 13) eT() = fo T e dt = 6 - 6 (1 T T 6

302

AS T-> -, F - 3', as it should. Clearly, though, when T<((,

a significant problem develops in that

1 -Tr3 (i) T T' (ignoring et)

If T is 10-3 , for example, P3 is 2.5x10 -1 3 . Clearly, the dif-

ference between 6 and 6(1±10-3+ 1/2xi0-6+ I/6x10)- 9e- will

tax the decimal places of a CRAY in single precision.

However, the following prescription gives good accuracy

over the entire range.

Let Psmall 1/4 T4-I/5 T + 1/12 T6

Pbig = 6-(1.0222 8 13 + 3 .0093 9T2 + 5.002488T +5.1244)e- 
T

Then -Psmall * Pbig
r3 (T) Psmall + Pbig

The lower terms are found by downward recursion such that

r (r) 1 +T 3 e T
2

"I (T) = ( 1'2() + T2 e T )

O (T) =  I(T) + T e-"
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(Reference 8) Thus, the r* integral is solved by generating

the incomplete gamma function in the method described above at

each ds interval.

Numerical Solution to the Transfer Equation

Now, all physical parameters of the plasma have been pre-

sented: the dimensions, the angular variables and the material

properties. With this information on hand, the intensity (and,

subsequently, its moments), can be solved for. Recall, how-

ever, that the material properties input are only approximate.

Even the S* function is based on an approximate "first guess"

source function, and thus has limited, albeit improved, accu-

- racy. Consequently, the moments J, H, and K share the limited

accuracy of I. The repair for this inaccuracy is done via

iteration.

In this section, the numerical form of the solution to

the transfer equation, that is, the derivation of the value

for I at each radius, is presented. Following this, the cal-

culation of the moments of intensity is expounded upon. Last

is presented the iteration techniques used to force the condi-
%'.

tion of radiative equilibrium, thereby providing the correct

solution of the problem.

Solution of the Transfer Equation. Using the generated

source function S*, the transfer equation reduces in terms of

the radius mesh to

l, I(j+l) = I(j)e' + I )1-  + S* (l j+1-e (79)
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where, I(J+l) is the intensity at the last ds interval. In

previous chapters, we have discussed passing rays through a

sphere, but have not defined the order in which this is done.

Figure 10 shows the order of rays which are evaluated for a

five radius radial mesh.

;i1= first ray

S3

S5 = last ray

Figure 10

Order of Rays of Intensity Passing Through a Sphere

Beginning with the outermost ray, SI, the equation is solved

for each segment along the ray until the entire ray is summed

over, or integrated.

In this example, there are five radii. The outer ray has

two ds segments to the ray. The next ray has four segments.

The last has eight. Beginning with ray one, 1(5) is solved

from

1(5) = I(6)e + S* (I - e ) (80)

where 1(6) =0. Then 1(4) is
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1(4) = I(5)e- (5) + S* (1 - e- (5)) (81)

., Again 1(5) is solved for by

I(5) = I(4)e- () + S* (1 - ( ) (82)

Integration over ray two is then done such that

--1(5) = I(6)e_ (6) + S* (1 - e- (6) )

--1(4) = I(5)e (5) + S* (1 - e- (5))

--1(3) = I(4)e (4) + S* (1 - e- (4))

etc., to

--I(5) = I(4)e- (4) + S* (1 - e- (4))

The process is repeated, ray by ray, until the center

ray is integrated.

A Solution of the Moments of Intensity. By solving for

the intensity at each radius for each ray, we are simply solv-

ing for the intensity at each angle on the radius mesh. The

moments of intensity are then found by numerically integra-

tion, using these solutions. Or

a.'. i+

J(r) = I I(r,U) wk

Ii=+1

K(r) = I l(r,u) wk
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where w are the weights for each angle and I is the value of
* W k

intensity solved for at each angle (ray interception point).

Iteration of the Solution. As previously stated, the so-

lution to the transfer equation has a limited accuracy as

solved above, due to the initial crudeness of estimates of

* the material properties. The source function approximates,

but does not guarantee, radiative equilibrium. However,

knowing J and S at each radius point equilibrium can be forced

by successive iteration. The method of iteration depends im-

plicitly on the optical thickness of the material. There are

two commonly accepted schemes of iteration, the Lambda itera-

tion scheme for the optically thin case and the Unsold itera-

tion scheme for the optically thick case.

i: ' Lambda Iteration Scheme for the Optically Thin At-

mosphere. The Lambda iteration is essentially the statement

of radiative equilibrium. That is, the source at each radius

point is simply replaced by the mean intensity calculated by

the ray-integration scheme. Analytically,

S(j) = J(j) (83)

It would seem at first glance that this is sufficient to es-

tablish radiative equilibrium; however, it is not over a wide

variety of ranges. As stated by Mihalis in Reference 7, "In

principle, successive applications of the (Lambda iteration

scheme) should improve the solution, and, eventually, produce

the exact solution. .... In practice, however, the convergence
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is too slow to be of any value, if the effective range ...

is of order = 1, so errors at large depth are removed only

'infinitely slowly.'" (7:62).

The Unsold Iteration Scheme for Optically Thick

Atmospheres. As a result of the Lambda iteration being inap-

propriate to use for optically thick atmospheres, another

scheme must be used. This second method is called the Unsold

iteration, after its creator (Ref 7). The Unsold iteration,

is developed from the first order moment equation, which is

)K + 3K-J =_xH (27)ar r

Introducing an integrating factor, q, known as the sphericity

function, the above equation can be reduced to

1 d( = -XH (84)'." q

where

K d _ 3K-J
q dr r (85)

Differencing this yields

q(j+1) K )x-iq(j)K(j)= (j)q(j)H(j)+ x(j+l)q(j+l)H(j+l

ii '(86)
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or

q(j+ 1)x (j+1)+ (r(j+l)-r(j)X(j+l)H(j+l) q(j) (j)

* (r(jil)-r(j))×(j)H(j (87)

We then assume that deviation from the "true" values of the

moments vary linearly such that

1 d(qfoJ) = -x(AH) (88)

q dr

where fk = A K/AJ, AH = (P/4irr2 )-Hcalc AJ = Jex - Jcalc" Note

that for radiative equalibrium J = S. We substitute the q's

calculated into the previous equation and solve through for

J exact(=S exact ), which yields

S )= J(j) - (r(J ) -r()K )(J) P
2f(j) j f(j) 4rr(jy2 - (89)

i [ S(j+I) (PJ(j+l) /(47rr(j) 2H(j))+ 2 (r(j+l) - r(j))X0j+I)H(j+I)

1f Q) +J(j+l) + -:-r(j+l) -r(jf 0+1) + H 0+1)

This is a self consistent equation which, in the limit of

AH=O, produces

S(j) = J(j) (90)

This value can now be used to generate a new, more accurate

S* function and hence bring the answer closer to the correct

equilibrium value. This iteration solution brings about a

stable solution within just a few iterations.
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Solution of the Moments Equations

Although solution of the moments equations will not

yield any new information in terms of the intensity through

the sphere, there is a usefulness in solving for these equa-

tions numerically. That is, once values for the intensity,

source function, J and K have been solved for they can be

substituted into the moments equations. The moments equa-

tions are now solved for H and the value of H compared with

that generated by the integration of rays. This, then, is

an excellent check on the relative accuracies of the values

calculated as well as an informative look at relative accu-

racy of the moments equations as compared to each other. For

the purpose of completion, the differization of the moments

equations are reproduced below.

The Zero'th Order Moment Equation. The formulation for

the zero'th moment equation is

1 (r2H) = X(S - J) (91)
r2 3r

Using the backward difference method on the term on the left

hand side, and averaging the right hand side, yields

r(j+l) 2-r(j) 2  r(j) 2  r(j-1) 2

,) ) -H )X (j+I)(S(j-I)-J(j-I) (92)
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H(O) is not solved for in this manner, but is defined as

identically equal to zero for reasons outlined in Chapter II.

The First Order Moment Equation. In a like manner, the

first order moment equation

_aK + 3K-J _-×H (93)
ar r

is given the numerical equivalent

i "K(j+I) -K() I 3K(j) -J(j) 3K(j+I) -J(j+l ii L".~+ =1 + (j)H(j) +
r(j+l) r j +  r(j) r(j+l) 2 -( )H

X (j+I)H(j+J (94)

iV
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V. Computer Code Logic Flow

All of the elements of the ray-integration technique

have now been discussed. In the first chapter, the basic

definitions of the physical nature of radiation transport

were examined. After which, an overview of the technique

itself was provided along with a development of the logic

which spawned it. And, in the last chapter, the numerical

representations of the equations used in radiative transport

were presented. The efforts to so differentiate the equa-

tions culminate in the creation of a computer code which in

turn implements the ray-integration technique and produces an

approximation for process of energy transport in the grey at-

mosphere problem.

The computer code that was used is listed in Appendix D.

For convenience to the reader, the logic flow of the program

is presented on the following page.
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. Table VI

Logic Flow for Computer Code

INPUT:
-- OPACITY
-- RADII
-- POWER

CALCULATE:

-- SOURCE FUNCTION
-- ANGLES AND ANGULAR WEIGHTS
-- OPTICAL DEPTH
S-R* AND S*

FOR EACH RAY
-- FOR EACH ds INTERVAL

-- SOLVE TRANSFER EQ. FOR INTENSITY
-- ACCUMULATE MOMENTS

NEXT RAY

SSOLVE MOMENTS EQUATIONS

OUTPUT
-- TOTAL RADIATION FLUX
-- NET RADIATION FLUX
-- SOURCE FUNCTION
-- EDDINGTON FACTORS, fk and fH

". -- EDDINGTON FLUX FROM
-- RAY-INTEGRATION TECHNIQUE
-- ZERO AND FIRST MOMENT EQ.
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VI. Results and Discussions

To meet the second objective of this thesis, verifica-

tion of the ray-integration technique via computer code, the

code stated in the last section was run with a variety of in-

puts. A sample of the results produced and a discussion of

those results are presented in this section.

Case 1

To begin verification of the program, the code was
"4

run with a set of inputs approximating a sphere of outer ra-

dius equal toO.Oll meter, constant opacity, with an input for

.. rate of energy change per radius of 6.28xi0 1 0 watts. The

radius mesh used consisted of 22 radii, evenly spaced and hav-

ing a width of 0.005 meters between mesh points. These values

are essentially arbitrary, in that any physically valid set of

data could be used. The output to the ray-integration program

for this set of data is the total radiation flux (4rr 2H), the

opacity, the source function, S, the all-angle radiant inten-

sity, J, and the moments ratios which include the Eddington

factors fk and fH as well as the ratio J/S. The results are

illustrated in Figures 11 through 14.

Consider, first, the total radiation flux. Theory pre-

dicts that the flux should rise from zero in the center to a

constant value in the atmosphere and, due to the constraint

of radiative equilibrium, remain constant throughout the

,,. sphere. Figure 11 shows that the program constructed follows
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Figure 11

Total Radiation Flux (Case I)
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this prediction reasonably well in the outer regions of the

sphere, but produces some fluctuations in the innermost re-

gions. Figure 11 shows the solution to the flux for 100 iter-

ations. The first three iterations are identified on the

graph by the numbers 1, 2 and 3. The solid line which is

shown is the value to which the iteration converged. The

fluctuations illustrated are not disturbing since, in any nu-

merical analysis, slight inaccuracies are bound to occur.

These could be due to round off error by the computer or to

non-optimum approximations of the continuous functions in-

volved. In this case, it is believed that the latter is re-

sponsible for the fluctuations which occur in the output. To

support this hypothesis, the following explanation is given.

Recall that there are fewer rays intersecting (and thus

fewer tangent points occurring) at the inner radii than at

the outer ones. Indeed, only one ray intersects the central

radius. This means that the angular resolution in the center

regions is considerably less than in the outer limits. Thus,

any errors in angular variables will be more prominent in the

center regions. It is thought that the errors are in the an-

gular weights approximations. This theory was examined by

varying the expansion of the intensity function and genera-

ting new angular weights for each expansion. The function

was expanded in numerous ways including Chebyshev polynomials

(Type I and II), variations of expansions in terms of the

angle o and the sine of the angle0 , and numerous expansions

in terms of cosines of the angle o. All of these expansions
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effected the fluctuations in flux by some amount: all increas-

ing the fluctuations. Only the Chebyshev polynomials, Type I,

were close to the degree of fluctuation caused by the Lengen-

dre expansion, but there was still no improvement. It is be-

lieved that there is still an as yet undiscovered variation of

intensity expansion which will result in an even better fit of

the program output to predicted results.

Now consider some of the other output produced as shown in

Figures 12 - 14. In Figure 12, the opacity is shown as a re-

minder to the programmer of the opacity input. This figure

also shows the source function and average intensity output at

each radius. The moments ratios (Figure 13) show again how

reasonably the ray-integration model obeys physical law. Re-

call that for the radiative equilibrium condition J=S in the

atomosphere region, thus the ratio J/S should go quickly to

one. Recall also that the Eddington approximation states that

the Eddington factor fk should be approximately 1/3 at the cen-

ter, (isotropic limit), and progress toward 1. In addition,

the ratio fH is expected to go from 0 to I over the region of

the sphere. The results shown in Figure 13 show good approxi-

mation of these conditions. The quantity J/S goes quickly to

one and drops slightly at the end. This drop at the end can

be explained by recalling that an extrapolated boundary was

imposed on the sphere which numerically created an artifically

high source function at the outer boundary, thus resulting in

an artificially low J/S ratio, which the Unsold iteration was

. unable to correct for completely. Experimentation with other
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boundary conditions are in order to rectify this condition.

As shown in Figure 13, the ratios fand H begin at the

proper limits in the center of the sphere, (1/3 and 0 respec-

tively) and build slowly toward one. The values do not quite

reach one at the physical limit of the sphere because only be-

yond this limit does true streaming occur and the values of

fk - > 1 and fH -> 1 actually occur.

Lastly, consider the solution to the moments equations

shown in Figure 14. The solid line is the value of the Ed-

dington flux solved for directly in the ray-integration tech-

nique and the other lines were formed by substituting in the

other moments calculated to the moments equation and solving

through for H. Note that, in the outer regions, all three

equations agree very well. In the center regions of the sphere

the solution of the zero'th moment seems high and the solution

to the first moment seems low. These variations are also be-

lieved due to the inaccuracy of angular weights in the center

regions of the sphere.

Case II

The first variation done, to experiment with the versa-

tility of the program, was to introduce a deliberate perturba-

tion to the input source function. This was done to see if the

program would still iterate to the answer given in the first

case, providing the mesh, power and opacity remained the same.

The perturbation was to introduce an artificially high central

source value by multiplying the source created by various val-

ues. The total flux radiation output by increasing the source
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region by a factor of 2 appears in Figure 15. The flux, which

° the program iterated to, is exactly that of the first case.

Several perturbations were introduced, all of which iterated

to the same answer. This result indicates that the iteration

technique used, in all cases, brought about equilibrium as near

as it could, considering the lack of angular resolution.

Case III

Another variation done for verification was to alter the

radius mesh of Case I, leaving all other parameters the same.

The new radius mesh used also consisted of 23 radii, but a

logarithmic spacing was used in which the spacing between

radii increased moving out from the center to the physical

boundry of the sphere. The output produced for the logarith-

mic mesh appear in Figures 16 through 19. Note that the re-

sults produced with the self-similar mesh are virtually the

same as for the even mesh case. Fluctuations still occur

within the inner regions of the sphere but, while not as large

in magnitude, there are noticeably more of them.

This follows for the error existing in the angular

weight calculated. That is, with smaller gaps between radii

in the center of the sphere, the ds intervals integrated over

will be smaller and more will exist closer to the center of

the sphere. If the expansion used for the intensity (remem-

ber, this generates the production of angular weights) is not

accurate, then the departures of the intensity from the true

value might be more noticable over small segments sampled.

With the logarithmic mesh used, there are more samplings of
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Total Radiation Flux (Case II)
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Total Radiation Flux (Case III)
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the intensity taken at the inner radii of the sphere, thus

more fluctuations will appear.

Consider the remainder of the output for this case, Fig-

ures 17 - 19). First, note that Figure 18 shows an improved

agreement of JIS and fk* There is still, however, fluctua-

tion in fH* Careful examination of the figure shows that fH

does start at zero, but rises quickly to approximately 1/4,

but then drops and resumes its climb toward one. The sudden

rise in f H in the inner regions of the sphere occurs here

for the same reason that it did in Case I, lack of angular

resolution in the center.

Also note that the net radiation flux as illustrated in

-p Figure 19 shows good agreement between the different techniques

used to compute it.
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VII. Conclusions and Recommendations

The preceding chapter has presented a series of cases

for which the ray-integration technique was implemented. In

these cases, reasonable agreement is made between the results

produced and those expected from the physics of the situation.

Inaccuracies still exist in three areas. Most obviously, the

angular weights generated are not optimum. In addition, the

boundary conditions used to generate the source function at

-i the outer boundary is not optimum in that it produces an arti-

ficially high value at this limit.

It is suggested that further efforts be made to find the

appropriate weight scheme and boundary condition for this pro-
.5

' -'a. gram.

It is further recommended that the technique developed

be expanded to applicability in a frequency dependent (i.e.,

non-grey atmosphere) problem. Also expansion should be made

to make the technique valid for time varying energy flow.
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i Appendix A

Gaussian Quadrature

Given a definite integral

fb f(x) w(x) dx
a

where f(x) is some polynomial exisitng over the interval (a,b).

This integral can be approximated by the sum

.. n
Y f(Xk) Ak

k=l

which contains 2n + I parameters:

n xk ' s, points for evaluating f(x)

n Ak' s, coefficients

and

the choice of n itself

It was pointed out by Gauss that for unevenly spaced x points

for an n'th degree polynomial, whichis orthogonal to all lower

degree polynomials, that the Ak coefficients simply represented

a set of weights. And that if these weights were multiplied by

i the function f(x) at the x interval, then the summation approx-

imation to the integral would be exact. Some of the polyno-

mials which fit these criterion are Legendre, Laguerre, Her-

mite, and Chebyshev (1:970-973).
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Appendix B

Cubic Spline Interpolation

One method of obtaining an estimate values for a function

which can be approximated as a polynomial over a large inter-

val, is to the divide interval into a series of subintervals

and construct a polynomial along each subinterval which gener-

ally follows the overall function in a pieceways manner. If

the polynomial function being interpolated is of third order,

then the method used is called cubic spline interpolation, and

is described as follows.

Given a function f(x) defined on the interval a to b

where the interval is divided into subintervals x such that

a ( x x < " ... xn < b, a cubic spline interpolant, S, can

be formed if the function, f, obeys the following conditions:

a) S is a cubic spline polynomial, denoted S., on the

subinterval (x xj ) for each j = 0, 1, ... , n - 1;

b) S(x.) = f(x.), for each j = 0, 1, ... , n;

c) S (x ) = S. (xj ) for each j =0, 1,-'- j j+ I j+l Ij-lI'"'

n -2

d) S'(x )+ = S' + 1 (x + 1) for each j = 0, 1,.. j j +J j + I" '
- J.'

n-2

e) Sj(xj + 1 )  
1 (x +) for each j = 0, 1,

n -2

f) one of the following set of boundary conditions is

satisfied

- y . (i) S'(x) = S"(x) = 0

['..%

..-. B-i
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(ii) S"(x O ) = f"(x ) and S'(x n ) = f'(x n )

Using condition one the interpolant, S, is of the form

S.(x) = a. + b.h + c.h2 + d.h 3

where h = (x - x.), if:
a 3

a = f(b)

b = f(b)\

c = 3(a - b) - (f'(a) + f'(b))
h h

and

d = 2(b - a) + (f'(a) + f'(b))
h h

(5:116-128)
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-Zo Appendix C

Glossary of Computer Terms

m Term Definition

al/a2/a3 fits for opacity polynomial

bfac/cfac fits for cubic spline interpolant

cosphl cosine of angle at beginning of ds interval

cosph2 cosine of angle at end of ds interval

c(jj) cosine of jj angle

delsor S-J

etaui e

'S g(j) opacity at j

gs(j) slope of opacity at j

j radius index

jn number of radii

jw tangent point index

jl/j2 # of radius at the beginning/end of the ds

interval

hmomO solution for H from zero moment equation

hmoml solution for H from first moment equation

nfreq number of iterations to be performed

phi(jj) angle at tangent point jj

pprime power/2*pi

psml/pbig estimates for gamma functions

pl - 4 exact solution of tau integrals

sourc(j) source function at j

radi radiant intensity
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radj(j) all-angle radiant intensity at j

radh(j) Eddington flux at j

radk(j) second moment of intensity at j

rstar r* function

%rl dr(jl)/ds

rsl dr(j2)/ds

rO impact parameter

rl/r2 values of the radii at the beginning/end of the
ds interval

sstar S* function

tauO opacity along line of sight

tl - 4 solution to tau integral

w(jw) weight at interval jw

c
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APPENDIX D

SOURCE CODE

1: $OPTIONS S=600,D=1O,A=40,X
2: C
3: C BEGIN PROGRAM BY INITIALIZING ARRAYS
4: C

5: DIMENSION R(25),WGHT(700),TAUE(1O)
6: DIMENSION G(25),GS(25),TAUO(325),SOURC(25),C(325
7: DIMENSION PI(325),P2(325),P3(325),P4(325)
8: DIMENSION RADJ(25),RADH(25),RADK(25),FLUX(25)
9: DIMENSION DELSOR(25),HMOMO(25),HMOM1(25)

10: REAL MSQR
11: TYPE'THE PROGRAM HAS BEGUN'
12: C

13: C READ INPUT FILE
14: C ----- - - - -

15: CALL OPEN (5,'LFILE.TXT",IERROR)
16: IF (IERROR .NE. 0) THEN
17: TYPE 'CANNOT OPEN INPUT FILE'

18: STOP 'RUN ABORTED'
19: ENDIF
20: READ (5,*) JN,(R(I),I=I,JN),AI,A2,A3,A4,A5,A6
21: C ---
22: C PRINT INPUT FILE AND INITIALIZE CONSTANTS
23: C

24: TYPE'JN= ',JN
25: TYPE'RADII= '
26: WRITE (1,I) (R(I),I=iJN)
27: 1 FORMAT(F7.4)
28: TYPE 'Al= ',Al
29: TYPE 'A2= ',A2
30: TYPE 'A3= ',A3
31: TYPE 'POWER= ',A4
32: TYPE 'NFREQ= ',A5
33: TYPE 'START= ',A6
34: START=A6
35: POWER=A4
36: NFREQ=A5
37: ITER=O
38: PI=3.141592654
39: PPRIME=ABS(POWER/(2*PI))
40: C

41: C CALL SUBROUTINE TO CALCULATE ANGULAR VARIABLES
42: C
43: TYPE 'BEGIN GENERATION OF PHI DEPENDENT VARIABLES'
44: CALL XFAC (JN,R,WGHT,C,P1,P2,P3,P4)
45: TYPE 'END GENERATION OF PHI DEPENDENT VARIABLES'
46: C

- 47: C CALCULATE OPACITY AND SLOPE OF OPACITY
48: C
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49: JNM=JN-1
50: JNM2=JNM-1
51: DO 100 J=I,JN
-,2: G(J)=(A3*R(J)+A2)*R(J)+AI
53: 100 GS(J)=2.0*A3*R(J)+A2
54: C
55: C CALCULATE 'FIRST GUESS'SOURCE FUNCTIO'
56: C
57: SOURC(JN)=PPRIME/(R(JN)*R(JN))
58: DOO JP=I,JNM2
59: J=JN-JP
60: SOURC(J)=SOURC(J+I)+(R(J+1)-R(J))*O.75*PPRIME
61: 1 *(G(J+1)/(R(J+1)*R(J+I))+G(J)/(R(J)*R(J)))
62: 101 CONTINUE
63: SOURC(1)=SOURC(2)+START*PPRIME*G(2)/R(2)
64: C
65: C ---
66: C BEGIN MAJOR LOOP TO CALCULATE ALL RAYS
67: C
68: C

69: DO 3000 NT=INFREQ
70: C
71: C CALCULATE TAU FOR EACH DS SEGMENT
72: C
73: DO 300 JZP=I,JNM
74: JZ=JN-JZP
75: DO 280 JK=1,JZP
76: JI=JZP*(JZP-I)/2+JK
77: JI=JN-JZP+JK-1
78: J2=Jl+l
79: Rl=R(JI)
80: R2=R(J2)
81: DR=R2-RI
82: DR2=DR*DR
83: DR3=DR2*DR
84: BB=(3.*G(J2)-3.*G(J1)/DR2-(GS(J2)+2.*GS(JI) )/DR
85: CC=(GS(J2)+GS(J))/DR2-2.*(G(J2)-G(JI))/DR3
86: T1=(((-CC)*R+BB)*R1-GS(JI))*RI+G(JI)
87: T2=((3.*CC)*R-2.*BB)*R1+GS(JI)
88: T3=-3.*CC*R1+BB
89: T4=CC
90: 280 TAUO(JI)=TI*PI(JI)+T2*P2(JI)+T3*P3(JI)+T4*P4(JI)
91: 300 CONTINUE
92: C
93: C INITIALIZE ALL INTENSITY MOMENTS TO ZERO
94: C
95: DO 350 J=1,JN
96: RADJ(J)=O.O
97: RADH(J)=O.O
98: 350 RADK(J)=O.O
99: JJ=O
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100: C-- - - - - - - - - - - - - - - -

101: C BEGIN CALCULATIONS FOR ENTIRE RAY
102: C-- - - - - - - - - - - - - - - -

103: DO 400 JZP=1,JNM
104: JZ=JN-JZP
105: RO=R(JZ)
106: COSPH2=C(JN*(JN-1)/2+JZ
107: IF (NT .EQ. 100) WRITE(1,1111)JZ
108: 1111 FORMAT(' JZ='12/,'Jl J2 JJ',3X,'R1',6X,'R2',
109: 1 7X,'Gl',1OX,'G2',6X,'TAU',8X,'CI',4X,'C2',
110: 2 7X, 'Si' ,9X, 'S2',9X, 'SSTAR' )
111: J1=JN+1
112: RADIO0.O
113: C - - - - - - - - - - - - - -
114: C CALCULATE 'INWARD-GOING' RAY
115: C - - - - - - - - - - - - - -
116: DO 380 JK=1,JZP
117: JJ=JJ+1
118: J1=J1-1
119: J2=J1-1
120: R1=R(JL)
121: R2=R(J2)
122: G1=G(J1)
123: G2=G(J2)
124: JW~j2*(j2-1)/2+JZ
125: JI=JZP*(JZP-1)/2+J1-JZ
126: COSPH1=COSPH2
127: COSPH2=C(JW)

S 128: TAU=TAUO(JI)
129: RS1=COSPH1/G1
130: RS2=COSPH2/G2
131: BFAC=(3.*(R1-R2)/TAU-(RS1+2.*RS2))/TAU
132: CFAC=(-2.*(R1-R2)/TAU+RS1+RS2)/TAU/TAU
133: ETAUI=EXP(-TAU)
134: PSML=((0.08333333*TAU-0.2)*TAU+0.25)*TAU**4
135: PBIG=6.-(((1.02228*TAU+3.00939)*TAU+5.02488)
136: 1 *TAU+5.1244)*ETAUI
137: T13=PSML*PBIG/(PSML+PBIG)
138: TERM=TAU*TAU*TAU*TAU*ETAUI
139: T12=0.333333*(TI3+TERM)
140: TERM=TERM/TAU
141: TI1=0.5*(TI2+TERM)

y..142: TERM=TERM/TAU
143: TIO=TI1i-TERM
144: RSTAR=R2+(RS2*TI1+BFAC*TI2+CFAC*TI3)/TIO
145: C1=(R2-RSTAR)/(R2-RI)
146: C2=(RSTAR-Rl-)/(R2-R1)
147: SSTAR=C1*SOURC(j1)+C2*SOURC(J2)
148: C
149: C TRANSFER EQUATION
150: C
151: RADI=RADI*ETAUI+SSTAR*(l.-ETAUI)
152: C
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153: If (NT .EQ, 100) WRITE(1,1112) J1,J2,JJ,R1,R2,G1,
154: 1 G2,TAU,C1,C2,SOURC(Jl),SOURC(J2),SSTAR
155: 1112 FORMAT(213,14,2F7.4,2E11 .2,E11 .3,2F7.3,3E12.4)
156: C - - - - - - - - -

157: C ACUMMULATE MOMENTS
158: C - - - - - - - - -

159: DRAD=RADI*WGHT(JW)
4160: WPERP=-C(JW)
1161: RADJ(J2)=RADJ(J2)+DRAD

162: DRAD=DRAD*WPERP
163: RADH(J2)=RADH(J2)+DRAD

!o$: DRAD=DRAD+WPERP
165: RADK(J2)=RADK(J2)+DRAD
166: 380 CONTINUE
167: JZ1=JZP+1
168: JZ2=2*JZP
169: J1=JZ-1
170: C-- - - - - - - - - - - - - -

171: C CALCULATE 'OUTWARD-GOING' RAY
172: C-- - - - - - - - - - - - - -

173: DO 390 JK=JZ1,JZ2
174: JJ=JJ+1
175: J1=J1+1
176: J2=J1+1
177: R1=R(Jl)
178: R2=R(J2)
179: G1=G(J1)
180: G2=G(J2)
181: JW=J2*(J2-1)/2+JZ
182: JI=JZP*(JZP-1)/2+J2-JZ
183: COSPH1=COSPH2
184: COSHP2=C(JW)
185: TAU=TAUO(JI)
186: RS1=-COSPHI/G1
187: RS2=-COSPH2/G2
188: BFAC=(3.*(R1-R2)/TAU-(RS1+2.*RS2) )/TAU
189: CFAC=(-2.*(R1-R2)/TAU+RS1+RS2)/TAU/TAU
190: ETAUI=EXP(-TAU)
191: PSML=((0.08333333*TAU-0.2)*TAU+0.25)*TAU**4
192: PBIG=6.-(((1.02228*TAU+3.00939)*TAU+5.02488)
193: 1 *TAU+5.1244)*ETAUI
194: T13=PSML*PBIG/(PSML+PBIG)
195: TERM=TAU*TAU*TAU*ETAUI
196: T12+0.333333*(TI3+TERM)
197: TERM=TERM/TAU
198: TI1=O.5*(TI2+TERM)
199: TERM=TERM/TAU
200: TIO=TI1+TERM
201: RSTAR=R2+(RS2*TI1+BFAC*TI2+CFAC*TI3)/TIO
202: Cl=(R2-RSTAR)/(R2-RI)

204: SSTAR=C1*SOURC(J1 )+C2*SOURC(J2)
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205: C
206: C TRANSFER EQUATION

'J ~ 207: C
208: RADI=RADI*ETAUI+SSTAR*(1.-ETAUI)
209: C
210: IF (NT .EQ. 100) WRITE (1,1112) J1,J2,JJ,R1,R2,
211: 1 G1,G2,TAU,C1,C2,SOURC(J1),SOURC(J2),SSTAR
212: C - - - - - - - - -

*213: C ACUMMULATE MOMENTS
214: C - - - - - - - - -
215: DRAD=RADI*WGHT(JW)
216: WPERP=C(JW)
217: RADJ(J2)=RADJ(J2)+DRAD
218: DRAD=DRAD*WPERP
219: RADH(J2)=RADH(J2)+DRAD
220: DRAD=DRAD*WPERP
221: RADK(J2)=RADK(J2)+DRAD
222: 390 CONTINUE
223: C - - - - - - - - - - - - - - -

224: C GO BACK AND CALCULATE NEXT RAY
225: C - - - - - - - - - - - - - - -

226: RADH(1)=O.0
227: RADK(1)=RADK(1)/3.0
228: 400 CONTINUE
229: DELSOR(1)=SOURC(1)-RADJ(1)
230: DO 440 J=2,JN
231: DELSOR(J)=SOURC(J)-RADJ(J)
232: C-- - - - - - - - - - - - - - - - -

S 233: C DEFINE AND PRINT FLUX FOR ALL RADII
234 : C-- - - - - - - - - - - - - - - - -

*235: FLUX(J)=4*PI*(R(J)*R(J) )*RADH(J)
236: 440 CONTINUE
237: RADH(1)0O.O
238: FLUX(1)0O.0
239: IF (NT .EQ. 100) GO TO 441
240: ITER=ITER+1

*241: TYPE
242: TYPE 'ITERATION ',ITER
243: TYPE 'TOTAL RADIATION FLUX RADIUS'
244: DO 557 I=1,JN
245: WRITE (1,557) FLUX(I),R(I)
246: 557 FORMAT (E11.3,30X,F7.4)
247: 441 CONTINUE
248: IF (POWER .GT. 0.0) GO TO 445

*249: C - - - - - - - - - - - - - - - - -

250: C DO LAMBDA ITERATION FOR THIN CASES
251: C - - - - - - - - - - - - - - - - -

252: SOURC(1)=O.O
253: DO 443 J=2,JN
254: 443 SOURC(J)=RADJ(J)
255: GO TO 449
256: 445 CONTINUE
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257: C-- - - - - - - - - - - - - - - - -

S 258: C DO UNSOLD ITERATION FOR THICK CASES
259 : C-- - - - - - - - - - - - - - - - -

260: SOURC(JN)=SOURC(JN)*PPRIME/ (2. *R(JN)*R(JN)
261: 1 /RADH(JN)
262: DO 446 JP=l,JNM2
263: J=JN-JP
264: CON=(R(J+1)-R(J))*O.5
265: A=CON*G(J)*RADJ(J)/RADK(J)
266: B=CON*G(J41)*RADJ(J+1)/RADK(J+1)
267: SOURC(J)=(RADJ(J)-A*RADH(J) )*(SOURC(J+1 )+B*PPRIME/(2.*
26S: 1 R(J+1 )*R(J+1 )))/(RADJ(J+1 )+B*RADH(J+1) )+A*PPRIME/
269: 2 (2.*R(J)*R(J))
270: 446 CONTINUE
271: B=A
272: CON =R(2)*O.5
273: A=CON*G(1)*RADJ(1)/RADK(1)
274: SOURC(1)=(RADJ(1)-A*RADH( ) )*(SOURC(2)+B*PPRIME/(2.*

K'275: 1 R(2)*R(2)))/(RADJ(2)+B*RADH(2))
276: SOURC(1 )=SOURC(1)+(PPRIME/(2.*R(2)*R(2)*RADH(2)) )*
277: 1 (SOURC(l)-RADJ(1))
278: 449 CONTINUE
279: 3000 CONTINUE
280 : C - - - - - - - - - - - - - - - - - - - -

281: C SOLVE FIRST AND ZERO'TH MOMENT EQUATIONS
282: C
283: HMOMO(1)=O.O
284: HMOMI(1)0O.O
285: DO 455 J=2,JNM
286: RBAR=0.5*(R(J-1)*R(J-1)+R(J)*R(J))
287: RDIFF=R(J)-R(J-1)
288: RHSBAR=0.5*(G(J-1)*DELSOR(J-1)+G(J)*DELSOR(J))
289: HMOMO(J)=R(J-1)*R(J-1)*HMOMO(J-1)/(R(J)*R(J))
290: 1 +RDIFF*RBAR*RHSBAR/(R(J)*R(J))
291: 455 HMOM1(J)=-((RADK(J+1)-RADL(J-1) )/(R(J+1)-R(J-1))
292: 1 i+(3.*RADK(J)-RADJ(J))/R(J) )/G(J)
293: HMOM1(JN)=-((RADK(JN)-RADK(JN-1))/(R(JN)-R(JN-1))
294: 1 +(3.O*RADK(JN)-~RADJ(JN))/R(JN))/G(JN)
295: C - - - - - -
296: C PRINT OUTPUT
297: C - - - - - -
298: TYPE
299: TYPE
300: TYPE 'OPACITY RADIUS'
301: DO 149 I=1,JN
302: WRITE (1,150) G(I),R(I)
303: 150 FORMAT (E11.3,7X,E11.3)
304: 149 CONTINUE
305: TYPE
306: TYPE
307: TYPE 'SOURCE RADIUS'
308: TYPE'FUNCTION'
309: DO 151 I=1,JN
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310: WRITE (1,150) SOURC(I),R(I)
311: 151 CONTINUE
312: TYPE
313: TYPE
314: TYPE 'ALL ANGLE RADIUS'
315: TYPE 'RADIANT INTENSITY'
316: DO 152 I=1,JN
317: WRITE (1,150) RADJ(I),R(I)
318: 152 CONTINUE
319: TYPE
320: TYPE
321: TYPE I*************EDDINGTON FACTOR****************'
322: TYPE
323:
324: TYPE' JIS H/J K/J RADIUS'
325: DO 500 J1I,JN
326: RADH(J)=RADH(J)/RADJ(J)
327: RADK(J)=RADK(J)/RADJ(J)
328: TFAC=O.O
329: IF (SOURC(J) .NE. 0.0) TFAC1I./SOURC(J)
330: RADJ(J)=TFAC*RADJ(J)
331: WRITE (1,499) RADJ(J),RADH(J),RADK(J),R(J)
332: 499 FORMAT (3(E11.3,4X),F7.4)
333: 500 CONTINUE
334: C
3 3 5: C
336: TYPE

S 337: TYPE
338: TYPE'********* NET RADIATION FLUX
339: TYPE
340: TYPE'RAY INTEG ZERO MOM FIRST MOM RADIUS'
341: DO 505 J=1,JN
342: RADH(J)=RADH(J)*SOURC(J)
343: WRITE (1,251) RADH(J),HMOMO(J),HMOM1(J),R(J)
344: 251 PORMAT (3(E11.3,4X),F7.4)
345: 505 CONTINUE
346: END
347: C - - - - - - - - - - - - - - - -

348: C BEGIN GEOMETRY FACTOR SUBROUTINE
349: C - - - - - - - - - - - - - - - -

350: $OPTIONS S=200,X
351: SUBROUTINE XFAC(JN,R,WGHT,C,P1 ,P2,P3,P4)

4 352: DIMENSION PHI(325) ,W(325) ,R(25) ,WGHT(700) ,C(700)
253: DIMENSION P1(250) ,P2(250) ,P3(250) ,P4(250)
354: REAL MSQR

*355: P1-3.14159265
356 : C - - - - - - - - - - - - - - - - - - - -

357: C CALCULATE PHI ANGLES AND ANGULAR WEIGHTS
358 : C - - - - - - - - - - - - - - - - - - - -

*359: C(1)=1.O
360: C(2)-1.O
361: C(3)=0.O

19- 362: C(4)=1.0
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363: C(5)=SQRT(1.-((R(2)*R(2))/(R(3)*R(3))))
S 364: C(6)0O.O

365: WGHT(1)=1.O
366: WGHT(2)1l./6.
367: WGHT(3)=2./3.
368: WGHT(4)=-O.099955
369: WGHT(5)=O.3556495677
370: WGHT(6)=0.4889186828
371: JJ=7
372: JNM=JN-1
373: DO 1000 KK=4,JN
374: KMAX=2*KK-1
375: DO 4 KlI,KMAX
376: 4 W(K)=O.0
377: KKP=KK+1
378: DO 10 K=1,KK
379: TESTX=R(K)/R(KK)
380: TESTY=SQRT(l.-TESTX*TESTX)

* 381: IF (TESTY .NE. 0.0) GO TO 23
382: PHI(K)=90.O*.0174532925
383: GO TO 24
384: 23 ARG=TESTX/TESTY
385: PHI(K)=ATAN(ARG)
386: 24 CONTINUE
387: 10 CONTINUE
388: DO 20 K=KKP,KMAX
389: 20 PHI(K)=PI-PHI(KMAX-K+1)

S 390: DO 100 K=2,KMAX,2
391: FM=PHI(K-1)
392: FO=PHI(K)
393: FP=PHI(K+1)
394: CP=GOS(FP)
395: CO=COS(FO)
396: CM=COS(FM)
397: DF=GM-CP
398: DS=(CM*CM-CP*CP)/2.
399: DS2 =(CM*CM*CM-CP*CP*CP-CM+CP)/2.
400: PSQR=(3.*CP*C:-1.)/2.
401: OSQR=(3.*CO*CO-1.)/2.
402: MSQR=(3.*CM*CM-1.)/2.
403: DEN=(CO*PSQR-CP*OSQR)+(CP*MSQR-CM*PSQR)
404: 1 +(CM*OSQR-CO*MSQR)
405: DWN=(CO*PSQR-CP*OSQR)*DF+(OSQR-PSQR)*DS+(CP-CO)*DS2
406: DWO=(CP*MSQR-CM*PSQR)*DF+(PSQR-MSQR)*DS+(CM-CP)*DS2
407: DWP=(CM*OSQR-CO*MSQR)*DF+(MSQR-OSQR)*DS+(CO-CM)*DS2
408: W(K-1)=W(K-1)+DWM/DEN
409: W(K)=DWO/DEN
410: W(K+1)=W(K+1)+DWP/DEN
411: 100 CONTINUE
412: DO 110 K=1,KK
413: C(JJ)=COS(PHI(K))
414: WGHT(JJ)=W(K)/2.

S 415: 110 JJ=JJ+1
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416: 1000 CONTINUE
417: TYPE'FINISH GENERATION OF COSINES AND WEIGHTS'
418: C
419: C BEGIN GENERATION OF P1-P4 CONSTANTS
420 : C-- - - - - - - - - - - - - - - - -
421: TYPE'BEGIN GENERATION OF PI-P4 CONSTANTS'
422: DO 2000 JZP=1,JNM
423: JZ=JN-JZP
424: JKI=JZP*(JZP-I)/2+1
425: JK2=JK1+JZP-1
426: DLAST=O.O
427: ELAST=O.O
428: IF (JZ .NE. 1) ELAST=ALOG(R(JZ))
429: DO 2000 JK=JK1,JK2
430: JI=JZ+JK-JKI
431: J2=Jl+l
432: RI=R(JI)
433: R2=R(J2)
434: RO=R(JZ)
435: DNOW=SQRT(R2*R2-RO*RO)
436: DD=R2+DNOW
437: ENOW=O.O
438: IF (DD .GT. 0.0) ENOW=ALOG(DD)
439: P1(JK)=DNOW-DLAST
440: P2(JK)=(R2*DNOW-RI*DLAST+RO*RO*RO*(ENOW-ELAST))*0.5
441: P3(JK)=((R2*R2+2.0*RO*RO)*DNOW-(RI*RI+2.0*RO*RO)
442: 1 *DLAST(*0.33333
443: P4(JK)=O.25*R2*DNOW*(R2*R2+1.5*RO*RO)+0.375
444: 1 *RO*RO*RO*RO*ENOW-0.25*RI*DLAST
445: 2 *(R1*R1+1.5*RO*RO)-O.375*RO*RO*RO*ELAST
446: DLAST=DNOW
447: ELAST=ENOW
448: 2000 CONTINUE
449: RETURN
450: END
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